
Thus, the parameters of a gas flow with solid particles in a nonsym~etric noz- 
zle have been determined by using the proposed method. The calculation results ex- 
plain the nonuniformity in the wear of the outlet section of a nonsymmetric nozzle. 

NOTATION 

x and y, present coordinates; u and u s , projections of the velocities of the 
gaseous and the solid phases on the nozzle axis, respectively; v and Vs, projec- 
tions of the velocities of the gaseous and solid phases on the normal to the nozzle 
axis, respectively; w and Ws, velocities of the gas and the particles, respectively; 
0, gas density; c, drag coefficient of a particle; m, particle mass, d, particle 
diameter; S, cross-sectional area of a particle; V, volumetric gas discharge; Yl, 
half of the dimension of the nozzle's outlet section; L1 and L2, curves of the noz- 
zle profile; r, time of particlemotion; u, kinematic viscosity coefficient of the 
gas; Ax k, integration step; Ark, time of particle motion along the section AXk; h, 
solid particle trajectory. Indices: o, flow parameters at the nozzle inlet; s, 
solid phase; k, step number (k = 0, I, 2 .... ). 
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FRICTION LOSSES ON END WALLS OF A VORTEX CHAMBER 

V. P. Koval' and I. O. Mazalevskii UDC 532.525.3.001.24 

The first integrals are obtained by employing the Kantorovich method for 
the boundary-layer equations for a flow in a vortex chamber, and losses 
due to friction on the end walls are determined. 

In [I] the distribution was investigated of velocities and pressures in a vor- 
tex chamber beyond the boundary-layer limits; in [2] its hydraulic characteristics 
were obtained without friction losses on the walls being taken into account. The 
experimental data of [3] show that the motion of a vertex flow near the end walls 
is accompanied by the formation of a radial current near the ends To improve the 
design of devices with a vortex flow, the design being based on the solution of 
boundary-layer equations, friction losses are determined on the end walls as well 
as the velocity distribution in the boundary layer. 

Let us consider the motion of a vortex flow in the zone of the main vortex 
(Fig. I) for r I < r < R K [i]. Since the axial component of the velocity is u = 0, 
the initial system of equations is as follows: 

1 0 p  _ O, (1) 
9 0 x  

Ov w 2 1 Op " , 02v V . . . . . . .  ' ( O~ + I Ov v 

Or r 9 Or -~- v~ \ Or 2 r Or r ~ --~- Ox ~ q - ) '  
( 2 ) 
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Fig. 3. Change zn , as a function of re: i) , 

I0-I; 2) , ; 3)~ -I0. 

aw vw ( a'w 1 aw w , a~w,~ 
v - -  -p- - -  = v T -+- r 

Or r \ Or ~ r Or r 2 a x  ~ J '  
(3) 

OU V 
-- + - -  _- o. (4) 
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In the above equations the kinematic-viscosity coefficient has been replaced 
by its turbulence analog. Since the satellite motion of the spirally twisted stream 
unavoidably results in the formation of vortical bunching with stabilized friction, 
one can therefore assume that ~T = const for the entire flow including the boundary 
layer. Such an assumption was already made, for example, in [4, 5], and has been 
confirmed by experiments on the distribution of velocities in the boundary layer. 

It follows from (I) that the pressure in the vortex chamber is constant with 
respect to the x coordinate. The radial distribution of pressure is now determined 
f~om (2) using (4): 

1 dp V 2 -~- W 2 

p dr  r 

where the radial component of the velocity, 

V = - -  IV~IR~ 
F 

and the circular one, 

T ~ l - - k  

in the main flow were determined in [i]. 

By using the radial distribution of pressure Eqs. (2) and (3) are modified and 
are now 

v 2 + w 2 V ~ + W 2 , O2v 
_ _ _ _ _ _ - -  __  - ? - M  r 

r r Ox ~ 

a2w 1 a w  w a+-w ~. 

v T + _ _  Or" + r Or r2 r ax"- ] 

One h a s  t h e  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s :  

(5) 

(6)  

for x ~ O  v-~O, w=O;  

Ov OW 
for X = 6  v = V ,  w = W ,  - -  - - 0 .  

Ox Ox 

By omitting the bars over the variables the dimensionless variables are 

- -  r X 0 - -  ~ '  
r , x - -  , ~ - -  , w ~ "  

RK R~ [VKt W+~ ' 

(7) 
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one writes now (5) and (6) as follows: 

O~-v k 

Ox "2 r 
1 B~rO_Ok ] + - _ _ _ ( v  ~ @ B 2 w  2) , 

OX 2 Or e O r  ~ r ' 

where the value 

( s )  

(9) 

B =  W~ (i0) 
IVKi 

corresponds to the tangent of the slope angle between the initial velocity and the 
radius. 

It follows from the analysis of the experimental results in [3] that in the 
zone of the main vortex the profiles of the radial and of the circular components of 
velocity in the boundary layer show an affine similarity. Therefore, an approximate 
distribution of velocities is sought in the form 

v = ,  (x) - - , t  (ii) 
r 

which is a solution of Eq. (4), and one also has 

(D (x) r l-~ , ( 1 2 )  

since the flow is self-similar. These functions satisfy the imposed boundary condi- 
tions. 

Then (8) and (9) are transformed as follows: 

q~" .= ~ [(1 --q~2) + B~r2(O__k~ (1 --  r (13) 

b i9 b~ 
ff~'~= " ~ " - - " ,  q ) ( 1 - - ~ ) .  (14) 

r 2 

Integrating Eqs. (13) and (14) by using the method of Kantorovich [6] one ob- 
tains a system of ordinary differential equations of the second order, 

~" + a~cp ~ + a2@ ~ -~ a 8 = O, 

�9 " + a4q)  ( I  § ~ )  = 0 ,  

(15) 

(16) 

where 

kr ) 
a x _ - -  1 ; a 2 = - -  

2 InRK \ r[ 
r I 

a~ = - -  a~ - -  a=, a~ = (2  - -  k )  ~ 

k 2 In R L k r~ / 
r l  

\ r~ l 

\ r ~ l  

The boundary conditions now are as follows: 

(p (o) = o, r (o) = o; ~ (6) = - -  1, �9 (~) = ~, ~' (~) = ~ '  (6) = o. (17) 
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Fig. 2. Distribution of radial and circular velocity 
components in a boundary layer (continuous curves - 
experimental data [3]; dashed curves - design data). 

Fig. 3. Change in ~ as a function of r : I) ~ 10-i; 
2) ~ ; 3) 4 �9 i0. c 

The solution of this two-point boundary-value problem is a function of the 
thickness of the boundary layer; it was obtained by using a digital computer, the 
sequence being as follows. First, the minimum is found for the functions ~[~, ~'(0), 
~'(0)] + i, ~[~, ~'(0), ~'(0)] - i, then having obtained the values of ~'(0) and ~'(0) 
one determines the velocity distribution by using the Runge-Kutta method. The re- 
suits of the computations for a vortex chamber investigated for a gas in [3] are 
shown in Fig. 2 and are in good agreement with the experiment. The assumption is 
thus confirmed that the turbulence analog of the kinematic-viscosity coefficient is 
constant in the case of a flow in the vortex chamber including the next to the wall 
zone. 

To find the first integrals of the equations, new variables are introduced: 

~" = p (e9) , ~" = pp' ,  r  = q (~) ,  cW = qq', (18) 

which enable us to lower the order of the system, 

pp'  + a,~ ~ + a2~ ~ + a~ = O, qq' -? a4 (1 + ~p) cp = O. (19) 

Equations (19) with separated variables can be integrated. Then 

P - -  = - -  a---L ~ - -  (ao~ 2 q- a3) q) 4-  Cz, q" = - -  a4 (1 + q~) (9 2 + C~. 
2 3 

(2o) 

From the boundary conditions (17) we find for the flow core Cz = (2/3)ai, C 2 = 

. 

If one now returns to the original variables and uses the boundary conditions 
one obtains the values of the derivatives at the end wall, 

/ -C 
O, (21) 

Thus the first integrals have been obtained by setting the derivatives equal 
to zero at the outer boundary as if the system had been overdetermined by them. Since 
the derivatives of velocities with respect to the coordinate x are known, one can 
solve the problem of friction losses on the end walls. The friction force on the 
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two opposite walls in the zone of the main vortex are found in terms of the tangen- 
tial tension, 

where 

Since 

Ffr ic  : 2 .f %dS,  
(s) 

\ Ox l T - \  Ox } i~=o 

_ Ow W K  {1}' Ov IVK[ {p, (x), - (x), 
Ox r oX r k-l  

therefore by using (21) one finds that 

�9 ~ = pv T -~-  a l  . 

The vanishing of the circular component of the tangential tension Zx~ = 0 and 
of the moment of momentum Mx~ = 0, respectively, points to the fact that fihe mixing 
in the flow core is decisive for losses of the moment of the original fluid vortex 
in the main vortex zone. 

Integrating over the surface from rl to R K one finds 

To evaluate the pressure losses due to friction when determining the hydraulic 
characteristics of the vortex chamber it is advisable to employ the ratio of the 
frictional force to the velocity head at the outlet of the nozzle, 

~A ~ FTP 

2 

In accordance with [i], if rl/RK is replaced by rc/R K for the values rc/R K < 
0.6, one finally obtains 

i+) 
The correcting function 

~ =  s t y - -  ~ - 1  , 

where 

-- y 

nT 
tz=l 

is shown in Fig. 3. It follows from the formulas that the fluid friction on the end 
walls of a vortex chamber with h > 2r c has little effect on its hydraulic character- 
istics. 

1 2 9 9  



To give an example it can be shown that for a vortex chamber investigated in 
[7] with R K = 12.5 mm, r c = 1.6 mm, h = 15 mm, k = 1.8 the quantity ~A = 0.187 is 

~40 times smaller than the overall resistance coefficient ~ = 7.95 [2]. 

NOTATION 

r, x, ~, coordinates; v, w; V, W, radial and circular velocity components for 
the boundary layer or the main flow, respectively; p, pressure; 9, density; 9T, tur- 
bulence analog of kinematic viscosity coefficient; 6, thickness of boundary layer. 
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EFFECT OF RADIATION ON THE SUPERSONIC FLOW OF A VISCOUS 

IONIZED GAS PAST BLUNT BODIES 

L. B. Gavin UDC 533.6.011 

The supersonic flow of a viscous monatomic ionized gas past blunt bodies 
is investigated. The effect of radiation on the field of flow and on the 
heat flux transmitted to the wall is shown. 

When a gas flows past a blunt body at supersonic speed, the presence of the 
high temperatures that arise in the wake of a shock wave leads to changes in the 
physicochemical properties of the gas because there is excitation of the internal 
degrees of freedom of the molecules, dissociation, ionization, and radiation. De- 
pending on whether the time taken by these processes is comparable to the charac- 
teristic time of flow in the shock layer or is much shorter, the conditions of flow 
past the body will be nonequilibrium or equilibrium conditions. In the first case 
we must consider the actual kinetics of the nonequilibrium processes. 

The flow of a monatomic nonequilibrium-ionized radiating gas in a shock layer 
was considered in [1-4], but only in the ideal-gas model. In [5] the case of flow 
of a viscous nonequilibrium-ionized gas was analyzed without taking account of ra- 
diation. 

In the present article we investigate the flow of argon past blunt bodies, with 
the following ionization reactions taking place in the gas: 

A~M-~A*-~-M, A*~, M:~A++M~e, (1) 

A - ?  hv-~-- A § + e, ( 2 )  

where A, A* denote the atom in the ground state and an excited state; A + denotes a 
singly charged ion; e denotes an electron; hv denotes a photon; M is A or e. 
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